(48-4) 08 * << * >> * Russian * English * Content * All Issues

Design and optimization of high-contrast gratings for multispectral VCSEL-SOI laser sources
I.S. Shashkin 1, M.I. Kondratov 1, A.E. Grishin 1, K.E. Pevchikh 2, S.O. Slipchenko 1, N.A. Pikhtin 1

Ioffe Institute, 194021, Russia, Saint-Petersburg, Politekhnicheskaya 26;
Joint Stock Company “Zelenograd Nanotechnology Center”,
124527, Russia, Moscow, Zelenograd, Solnechnaya alley 6, room IX, office 17

 PDF, 1180 kB

DOI: 10.18287/2412-6179-CO-1446

Pages: 535-541.

Full text of article: English language.

Abstract:
In the scope of a computational experiment, high-contrast gratings (HCG) formed on a silicon-on-insulator (SOI) platform within vertical-cavity surface-emitting lasers (VCSELs) were studied for multispectral laser sources. A simulation model for spectral characteristics calculation is proposed, which includes two heterogeneously integrated parts of the VCSEL: 1) the lower output mirror based on a HCG grating in the silicon layer of the SOI surrounded by air cavities to enhance the contrast of the HCG; 2) the semiconductor VCSEL structure with an air aperture for current and optical confinement. Comparative analysis results of the spectral characteristics of VCSEL-SOI structures for zeroth, first, and second-order modes, which can be excited in the air aperture of the VCSEL, are presented. It is demonstrated that the HCG, acting as one of the cavity mirrors, effectively discriminates the VCSEL higher-order modes. An algorithm for calculating HCG parameters that ensure the maximum reflectivity at a fixed thickness of the silicon layer of the SOI is developed.

Keywords:
high-contrast grating (HCG), HCG reflectivity for TE modes, vertical-cavity surface-emitting laser (VCSEL), silicon-on-insulator (SOI), heterogeneous integration.

Citation:
Shashkin IS, Kondratov MI, Grishin AE, Pevchikh KE, Slipchenko SO, Pikhtin NA. Design and optimization of high-contrast gratings for multispectral VCSEL-SOI laser sources. Computer Optics 2024; 48 (4): 535-541. DOI: 10.18287/2412-6179-CO-1446.

References:

  1. Babichev A, Blokhin S, Kolodeznyi E, Karachinsky L, Novikov I, Egorov A, Tian S-C, Bimberg D. Long-wavelength VCSELs: Status and prospects. Photonics 2023; 10(3): 268. DOI: 10.3390/photonics10030268.
  2. Kumari S, Haglund EP, Gustavsson JS, Larsson A, Roelkens G, Baets RG. Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850 nm. Laser Photon Rev 2018; 12(2): 1700206. DOI: 10.1002/lpor.201700206.
  3. Park GC, Xue W, Taghizadeh A, Semenova E, Yvind K, Mørk J, Chung I. Hybrid vertical-cavity laser with lateral emission into a silicon waveguide. Laser Photon Rev 2015; 9(3): L11-L15. DOI: 10.1002/lpor.201400418.
  4. Roelkens G, Liu L, Liang D, Jones R, Fang A, Koch B, Bowers J. III-V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon Rev 2010; 4(6): 751-779. DOI: 10.1002/lpor.200900033.
  5. Lu H, Lee JS, Zhao Y, Scarcella C, Cardile P, Daly A, Ortsiefer M, Carroll L, O’Brien P. Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit. Opt Express 2016; 24(15): 16258-16266. DOI: 10.1364/OE.24.016258.
  6. Park GC, Xue W, Piels M, Zibar D, Mørk J, Semenova E, Chung I-S. Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics. Sci Rep 2016; 6: 38801. DOI: 10.1038/srep38801.
  7. Shamakhov V, Slipchenko S, Nikolaev D, Smirnov A, Eliseyev I, Grishin A, Kondratov M, Shashkin I, Pikhtin N. Selective area epitaxy of highly strained InGaAs quantum wells (980–990 nm) in ultrawide windows using metalorganic chemical vapor deposition. Nanomaterials 2023; 13(17): 2386. DOI: 10.3390/nano13172386.
  8. Zhao X, McKenzie AF, Munro CW, Hill KJ, Kim D, Bayliss SL, Gerrard ND, MacLaren DA, Hogg RA. Large-area 2D selective area growth for photonic crystal surface emitting lasers. J Cryst Growth 2023; 603: 127036. DOI: 10.1016/j.jcrysgro.2022.127036.
  9. Besancon C, Néel D, Make D, Ramírez JM, Cerulo G, Vaissiere N, Bitauld D, Pommereau F, Fournel F, Dupré C, Mehdi H, Bassani F, Decobert J. AlGaInAs multi-quantum well lasers on silicon-on-insulator photonic integrated circuits based on InP-seed-bonding and epitaxial regrowth. Appl Sci 2021; 12(1): 263. DOI: 10.3390/app12010263.
  10. Chang-Hasnain CJ. High-contrast grating VCSELs. In Book: Michalzik R, ed. VCSELs. Fundamentals, technology and applications of vertical-cavity surface-emitting lasers. Berlin, Heidelberg: Springer; 2013: 291-317. DOI: 10.1007/978-3-642-24986-0_9.
  11. Haglund A, Gustavsson JS, Bengtsson J, Jedrasik P, Larsson A. Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating, IEEE J Quantum Electron 2006; 42(3): 231-240. DOI: 10.1109/JQE.2005.863703.
  12. Gustavsson JS, Haglund Å, Vukusić JA, Bengtsson J, Jedrasik P, Larsson A. Efficient and individually controllable mechanisms for mode and polarization selection in VCSELs, based on a common, localized, sub-wavelength surface grating. Opt Express 2005; 13(17): 6626-6634. DOI: 10.1364/OPEX.13.006626.
  13. Coldren LA, Corzine SW, Mašanović ML. Diode lasers and photonic integrated circuits. Hoboken, NJ: John Wiley and Sons Inc; 2012. DOI: 10.1002/9781118148167.
  14. Mateus CFR, Huang MCY, Deng Y, Neureuther AR, Chang-Hasnain CJ. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photonics Technol Lett 2004; 16(2): 518-520. DOI: 10.1109/LPT.2003.821258.
  15. Ferrara J, Yang W, Zhu L, Qiao P, Chang-Hasnain CJ. Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate. Opt Express 2015; 23(3): 2512-2523. DOI: 10.1364/oe.23.002512.
  16. Ferrara J, Zhu L, Yang W, Qiao P, Chang-Hasnain CJ. Heterogeneously-integrated VCSEL using high-contrast grating on silicon. Proc SPIE 2015; 9372: 937208. DOI: 10.1117/12.2079732.
  17. Karagodsky V, Chang-Hasnain CJ. Physics of near-wavelength high contrast gratings. Opt Express 2012; 20(10): 10888-10895. DOI: 10.1364/OE.20.010888.
  18. Park M-R, Kwon O-K, Han W-S, Lee K-H, Park S-J, Yoo B-S. All-monolithic 1.55 µm InAlGaAs/InP vertical cavity surface emitting lasers grown by metal organic chemical vapor deposition. Jpn J Appl Phys 2006; 45(11): L8. DOI: 10.1143/JJAP.45.L8.
  19. Haglund EP, Kumari S, Westbergh P, Gustavsson JS, Roelkens G, Baets R, Larsson A. Silicon-integrated short-wavelength hybrid-cavity VCSEL. Opt Express 2015; 23(26): 33634-33640. DOI: 10.1364/OE.23.033634.
  20. Li HH. Refractive index of silicon and germanium and its wavelength and temperature derivatives. J Phys Chem Ref Data 1980; 9(3): 561-658. DOI: 10.1063/1.555624.
  21. Adachi S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y. J Appl Phys 1989; 66(12): 6030-6040. DOI: 10.1063/1.343580.

© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20