(49-5) 02 * << * >> * Russian * English * Content * All Issues
Direct measurement of Stokes orbital parameters
A.V. Volyar 1, M.V. Bretsko 1, S.I. Khalilov 1, Y.E. Akimova 1
1 Physics and Technology Institute of V.I. Vernadsky Crimean Federal University,
Prospekt Academika Vernadskogo 4, Simferopol, 295007, Republic of Crimea, Russia
PDF, 1535 kB
DOI: 10.18287/2412-6179-CO-1655
Pages: 715-722.
Full text of article: Russian language.
Abstract:
The method of direct measurement of the Stokes orbital parameters is based on the analogy with the standard approach to measuring the Stokes polarization parameters of structured beams. A cylindrical lens serves as a quarter-wave plate, and the action of the polarizer is associated with the action of the matrix operator of the moments of intensity P of the second order on the intensity pattern of the structured beam, taken in front of the cylindrical lens and in the double focus plane. Physically measurable elements of the symplectic 4D matrix P are used, namely, the elements of the 2D submatrix W. The measurement process involves only two snapshots of the intensity distribution, the computer processing of which allows calculating six key components of the sought parameters. Calculation of the first two Stokes orbital parameters S1 and S2 involves computer processing of the first snapshot of the intensity pattern in front of the cylindrical lens. The third Stokes orbital parameter S3 is calculated during computer processing of the second snapshot of the intensity pattern in the double focus plane as the difference between the off-diagonal elements of the submatrix W in the ϕ1=π/4 and ϕ1=π/4 directions. The basis for such a choice of an approach to measuring the parameter S3 is the principle of reciprocity, discovered by us, between the orbital angular momentum of the beam under study and the off-diagonal elements Wxy in the plane of the double focus of the cylindrical lens. The experimental results obtained are in good agreement with computer modeling, as well as with the results of other authors.
Keywords:
orbital angular momentum, orbital Poincare sphere, structure light, second-order intensity moments.
Citation:
Volyar AV, Bretsko MV, Khalilov SI, Akimova YE. Direct measurement of Stokes orbital parameters. Computer Optics 2025; 49(5): 715-722. DOI: 10.18287/2412-6179-CO-1655.
Acknowledgements:
This work was partly funded by the Russian Science Foundation under project No. 24-22-00278 (Sections "Theoretical justification of a method of measuring Stokes orbital parameters" and "Second order intensity moment matrix".
References:
- Volyar AV, Shvedov VG, Fadeeva TA. The structure of a nonparaxial Gaussian beam near the focus: II. Optical vortices. Opt Spectrosc 2001; 90: 93-100. DOI: 10.1134/1.1343551.
- Volyar AV, Fadeeva TA, Egorov YA. Vector singularities of Gaussian beams in uniaxial crystals: Optical vortex generation. Tech Phys Lett 2002; 28: 958-961. DOI: 10.1134/1.1526896.
- Shen Yi, Meng Yu, Fu Xi, Gong M. Hybrid topological evolution of multi-singularity vortex beams: generalized nature for helical-Ince–Gaussian and Hermite–Laguerre–Gaussian modes. J Opt Soc Am A 2019; 36(4): 578-587. DOI: 10.1364/JOSAA.36.000578.
- Dennis MR, Alonso MA. Swings and roundabouts: optical Poincaré spheres for polarization and Gaussian beams. Philos Trans A Math Phys Eng Sci 2017; 375(2087): 20150441. DOI: 10.1098/rsta.2015.0441.
- He C, Shen Y, Forbes A. Towards higher-dimensional structured light. Light Sci Appl 2022; 11: 205. DOI: 10.1038/s41377-022-00897-3.
- Volyar A, Shvedov V, Fadeyeva T, Desyatnikov AS, Neshev DN, Krolikowski W, Kivshar YuS. Generation of single-charge optical vortices with an uniaxial crystal. Opt Express 2006; 14(9): 3724-3729. DOI: 10.1364/OE.14.003724.
- Shen Yi, Wang Zh, Fu Xi, Naidoo D, Forbes A. SU(2) Poincaré sphere: A generalized representation for multidimensional structured light. Phys Rev A 2020; 102: 031501(R). DOI: 10.1103/PhysRevA.102.031501.
- Dennis MR, Alonso MA. Gaussian mode families from systems of rays. J Phys Photonics 2019; 1: 025003. DOI: 10.1088/2515-7647/ab011d.
- Bastiaans MJ. Wigner distribution function and its application to first-order optics. J Opt Soc Am 1979; 69(12): 1710-1716. DOI: 10.1364/JOSA.69.001710.
- Alekseev KN, Volyar AV, Fadeeva TA. Spin-orbit interaction and evolution of optical eddies in perturbed weakly directing optical fibers. Opt Spectrosc 2002; 93(4): 588-597. DOI: 10.1134/1.1517085.
- Shen Yi, Yang Xi, Naidoo D, Fu Xi, Forbes A. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica 2020; 7(7): 820-831. DOI: 10.1364/OPTICA.382994.
- Fatkhiev DM, Butt MA, Grakhova EP, Kutluyarov RV, Stepanov IV, Kazanskiy NL, Khonina SN, Lyubopytov VS, Sultanov AK. Recent advances in generation and detection of orbital angular momentum optical beams – A review. Sensors 2021; 21(15): 4988. DOI: 10.3390/s21154988.
- Padgett MJ, Courtial J. Poincare-sphere equivalent for light beams containing orbital angular momentum. Opt Lett 1999: 24(7): 430-432. DOI: 10.1364/OL.24.000430.
- Van Enk SJ. Geometric phase, transformations of gaussian light beams and angular momentum transfer. Opt Commun 1993; 102: 59-64. DOI: 0.1016/0030-4018(93)90472-H.
- Alieva T, Bastiaans MJ. Phase-space rotations and orbital Stokes parameters. Opt Lett 2009; 34(4): 410-412. DOI: 10.1364/OL.34.000410.
- Calvo GF. Wigner representation and geometric transformations of optical orbital angular momentum spatial modes. Opt Lett 2005; 30(10): 1207-1209. DOI: 10.1364/OL.30.001207.
- Berry MV. Quantal phase factors accompanying adiabatic changes. Proc R Soc Lond A 1984; 392: 45-57. DOI: 10.1098/rspa.1984.0023.
- Volyar A, Bretsko M. Mapping structured Laguerre–Gaussian beam states onto the orbital Poincare sphere in the form of controllable spatial trajectories. J Opt Soc Am A 2024; 41(9): 1648-1655. DOI: 10.1364/JOSAA.529894.
- Volyar A, Abramochkin E, Akimova Ya, Bretsko M. Control of the orbital angular momentum via radial numbers of structured Laguerre–Gaussian beams. Opt Lett 2022; 47(10): 2402-2405. DOI: 10.1364/OL.459404.
- ISO 11146-2:2021. Lasers and laser-related equipment – Test methods for laser beam widths, divergence angles and beam propagation ratios – Part 2: General astigmatic beams. Geneva, Switzerland: ISO; 2021.
- Nemes G, Siegman AE. Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics. J Opt Soc Am A 1994; 11(8): 2257-2264. DOI: 10.1364/JOSAA.11.002257.
- Volyar A, Abramochkin E, Bretsko M, Akimova Ya. Engineering orbital angular momentum in structured beams in general astigmatic systems via symplectic matrix approach. Photonics 2024; 11(3): 191. DOI: 10.3390/photonics11030191.
- Weber H, Herziger G, Poprawe R. Laser physics and applications. Subvolume A: Laser fundamentals. Berlin: Springer; 2004. ISBN: 978-3-540-44821-1.
- Born M, Wolf E. Principles of optics. Electromagnetic theory of propagation, interference and diffraction of light. 7th ed. Cambridge: Cambridge University Press; 1999. ISBN: 0-521-64222-1.
- Guillemin V, Sternberrg S. Symplectic techniques in physics. Cambridge University Press; 1984. ISBN: 0-521-38990-9.
- Kotlyar VV, Kovalev AA. Orbital angular momentum of paraxial propagation-invariant laser beams. J Opt Soc Am A 2022; 39(6): 1061-1065. DOI: 10.1364/JOSAA.457660.
- Abramochkin E, Volostnikov V. Beam transformations and nontransformed beams. Opt Commun 1991; 83(1-2): 123-135. DOI: 10.1016/0030-4018(91)90534-K.
- Luneburg RK. Mathematical theory of optics. Berkeley: University of California Press; 1966. ISBN: 978-0520007802.
- Volyar A, Abramochkin E, Egorov Y, Bretsko M, Akimova Y. Fine structure of perturbed Laguerre–Gaussian beams: Hermite–Gaussian mode spectra and topological charge. Appl Opt 2020; 59(25): 7680-7687. DOI: 10.1364/AO.396557.
- Letsch A, Giesen A. Characterization of general astigmatic laser beams. Proc SPIE 2006; 6101: 610117. DOI: 10.1117/12.645866.short.
- Volyar AV, Abramochkin EG, Bretsko MV, Akimova YaE, Egorov YuA. Can the radial number of vortex modes control the orbital angular momentum? Computer Optics 2022; 46(6): 853-863. DOI: 10.18287/2412-6179-CO-1169.
- Kotlyar VV, Kovalev AA, Porfirev AP. Vortex Hermite–Gaussian laser beams. Opt Lett 2015; 40(5): 701-704. DOI: 10.1364/OL.40.000701.
© 2009, IPSI RAS
151, Molodogvardeiskaya str., Samara, 443001, Russia; E-mail: journal@computeroptics.ru ; Tel: +7 (846) 242-41-24 (Executive secretary), +7 (846) 332-56-22 (Issuing editor), Fax: +7 (846) 332-56-20